Question	Answer	Marks
1(a)(i)	M1 movement of electron(s) from potassium to iodine; M2 one electron transferred;	2 1 1
(a)(ii)	M1 regular arrangement/(giant) lattice of alternating; M2 positive potassium ions/K ⁺ and negative iodide ions/I ;	2 1 1
(a)(iii)	M1 strong (forces of) attraction (between oppositely charged ions) / ionic bonds are strong; M2 which require lots of energy to overcome/break;	2 1 1
(b)(i)	M1 dissolve solids (in water) and mix/combine/add; M2 filter; M3 wash the residue (with water); M4 leave to dry/place in oven/dry between filter papers;	4 1 1 1 1
(b)(ii)	$Pb^{2+} + 2I \rightarrow PbI_2$ formulae of ions correct; rest correct;	2
(c)(i)	start colour: colourless; end colour: brown;	2 1 1
(c)(ii)	M1 iodide/I ; M2 it is oxidised OR it loses electrons/it increases oxidation number/it reduces the chlorine;	2 1 1

Question	Answer	Marks	Guidance
2(a)	both correct charges of ions (calcium 2+ and nitrogen 3–);		Charges can be shown anywhere I missing symbols for nitrogen R wrong symbol of nitrogen anywhere
	M2 8 electrons around nitrogen (can be 3 dots and 5 crosses or 5 crosses and 3 dots or all dots or all crosses, but reject any other combinations of dots and crosses);		
	M3 Two electrons on the inner shell on any nitride ions/nitrogen atom: allow 2x or 2o once;		 A if electron configuration of nitride is given as 2,8 or N is given as 2,5 I any missing inner shells as long as one is present
		3	<i>General guidance:</i> I electron configuration/symbol of calcium ion I formulae/stoichiometry Covalent can score only M3
(b)(i)	/repeated/pattern/framework/periodic/ordered/alternating/ organised;		Ilayers
	(of)particles/atoms/molecules/ions/cations/anions;	2	A ionic/molecular/atomic I arrangement/bonding/properties
(b)(ii)	(so that ionic) charges balance or cancel/charge = 0/no charge/number of positive = number of negative charges/charge is neutral or neutralised;		
	M2 $3(-) \times 2 = 2(+) \times 3$;	2	A 6(+) = 6(-) I statements about electron transfer/valency/ ox state unless valency is referring to ionic charges e.g. valencies 3+ and 2- can get credit if used properly Ratio of ions is 3:2 therefore ratio of charges is 2:3 scores 2

Question	Answer	Marks	Guidance
2(c)	it (refers to Ca)/Calcium/Ca (atom) loses/gives/donates electrons/e/e ;		A half-equation with electrons on right-hand side R calcium ion/Ca ²⁺
	(these are) gained by nitrogen/N/N ₂ ;		A half-equation with electrons on left-hand side R nitride ion/N ³ I numbers of electrons/charges on ions/oxidation state/valency if mentioned R reference to oxygen/hydrogen if there is a suggestion that oxygen/hydrogen are involved in the reaction I reference to oxygen/hydrogen if in general statement e.g. oxidation is gain of oxygen
	nitrogen/N/N ₂ is reduced so calcium/Ca is the reducing agent (these two statements could be split i.e. not in same sentence) OR reducing agents are electron donors/give/lose electrons OR calcium/Ca is oxidised (by electron loss) therefore calcium is the reducing agent (these two statements could be split i.e. not in same sentence);	3	Electrons/e/e move from calcium to nitrogen get marks 1 and 2 A calcium/Ca/it is a reductant or calcium/Ca/ it reduces

3	(a) (i)	rate of reaction decreases / gradient decreases because <u>concentration</u> of bromine decreases reaction stops because all bromine is used up	[1] [1] [1]
	(ii)	initial rate greater / gradient greater because bigger surface area / more particles of iron exposed or:	[1] [1]
		final mass the same because mass of bromine is the same so the same mass of iron is used	[1] [1]
	(iii)	increase / decrease / change rate of stirring / not stirred measure new rate / compare results	[1] [1]
	(b) (i)	Fe to Fe ²⁺ because oxidation is electron loss / increase in oxidation number	[1] [1]
	(ii)	Fe	[1]
	(c) ado Fe ² Fe ²		[1] [1] [1]

(i)	Cu and Pd	[2]
(ii)	Ba and La	[2]
(iii)	+2 or 2+ or Ba ²⁺	[1]
(iv)	Ba or La	[1]
(v)	it is a transition metal or a d block element	[1]
		[Total: 7]

4

5 (a)	from methane [1] and water [1]	
	OR electrolysis [1] suitable electrolyte [1]	
	OR alkane [1] cracking [1]	[2]
(b)(i)	iron	[1]
(ii)	lower temperature moves equilibrium to right because forward reaction is exothermic	[1] [1]
(c)(i)	H—H endothermic endothermic exothermic	[1] [1] [1]
(ii)	More heat given out than taken in [1] –2328 + 945 + 1308 = –75(kJ) [1]	
	OR More heat given out bond forming than taken in bond breaking [2] Must mention bond breaking and forming	[2]
		TOTAL = 10